Control perfecto del tiempo

Si la medición del tiempo de viaje de una señal de radio es clave para el GPS, los relojes que empleamos deben ser exactísimos, dado que si miden con un desvío de una milésima de segundo, a la velocidad de la luz, ello se traduce en un error de 300 km!
Por el lado de los satélites, el timing es casi perfecto porque llevan a bordo relojes atómicos de increíble precisión.

¿Pero que pasa con nuestros receptores GPS, aquí en la tierra?

Recordemos que ambos, el satélite y el receptor GPS, deben ser capaces de sincronizar sus Códigos Pseudo Aleatorios para que el sistema funcione.

Si nuestros receptores GPS tuvieran que alojar relojes atómicos (Cuyo costo está por encima de los 50 a 100.000 U$S) la tecnología resultaría demasiado costosa y nadie podría acceder a ellos.

Por suerte los diseñadores del sistema GPS encontraron una brillante solución que nos permite resolver el problema con relojes mucho menos precisos en nuestros GPS. Esta solución es uno de los elementos clave del sistema GPS y, como beneficio adicional, significa que cada receptor de GPS es en esencia un reloj atómico por su precisión.

El secreto para obtener un timing tan perfecto es efectuar una medición satelital adicional.

Resulta que si tres mediciones perfectas pueden posicionar un punto en un espacio tridimensional, cuatro mediciones imperfectas pueden lograr lo mismo.

Esta idea es fundamental para el funcionamiento del sistema GPS, pero su explicación detallada excede los alcances de la presente exposición. De todos modos, aquí va un resumen somero:

Una medición adicional remedia el desfasaje del timing.

Si todo fuera perfecto (es decir que los relojes de nuestros receptores GPS lo fueran), entonces todos los rangos (distancias) a los satélites se intersectarían en un único punto (que indica nuestra posición). Pero con relojes imperfectos, una cuarta medición, efectuada como control cruzado, NO intersectará con los tres primeros.

De esa manera la computadora de nuestro GPS detectará la discrepancia y atribuirá la diferencia a una sincronización imperfecta con la hora universal.

Dado que cualquier discrepancia con la hora universal afectará a las cuatro mediciones, el receptor buscará un factor de corrección único que siendo aplicado a sus mediciones de tiempo hará que los rangos coincidan en un solo punto.

Dicha corrección permitirá al reloj del receptor ajustarse nuevamente a la hora universal y de esa manera tenemos un reloj atómico en la palma de nuestra mano!

Una vez que el receptor de GPS aplica dicha corrección al resto de sus mediciones, obtenemos un posicionamiento preciso.

Una consecuencia de este principio es que cualquier GPS decente debe ser capaz de sintonizar al menos cuatro satélites de manera simultánea. En la práctica, casi todos los GPS en venta actualmente, acceden a mas de 6, y hasta a 12, satélites simultáneamente.

Ahora bien, con el Código Pseudo Aleatorio como un pulso confiable para asegurar la medición correcta del tiempo de la señal y la medición adicional como elemento de sincronización con la hora universal, tenemos todo lo necesario para medir nuestra distancia a un satélite en el espacio.

Pero, para que la triangulación funcione necesitamos conocer no sólo la distancia sino que debemos conocer dónde están los satélites con toda exactitud.